

Piper Cherokee-Series

Aircraft Systems & Emergencies Review

Flying 20 Club Aircraft`

N8107B – 1979 Piper Dakota

- 235HP Lycoming O-540-J3A5D
 - 6 cylinder normally-aspirated
 - > 2400RPM maximum

N455H – 2000 Piper Archer III

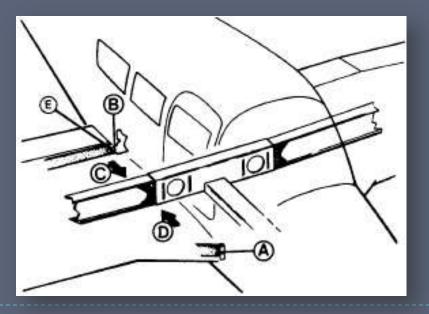
- I80HP Lycoming O-360-A4M
 - 4 cylinder normally-aspirated
 - > 2700RPM maximum

N8237B – 1980 Piper Archer II

- I80HP Lycoming O-360-A4M
 - 4 cylinder normally-aspirated
 - 2700RPM maximum for 5 minutes
 - 2650RPM maximum continuous

Outline

- Piper PA-28 Series Overview
 Systems Review
 - Cockpit Layout
 - ► 455H Overhead Switches
 - Pitot-Static System
 - Vacuum System
 - Electrical System
 - Fuel System
 - Brake System
 - Control System
 - Heating & Ventilation
 - Exterior
 - Tires
 - Weight & Balance


Break

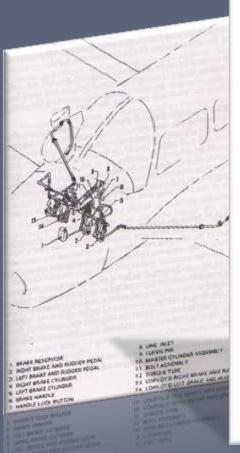
Emergencies

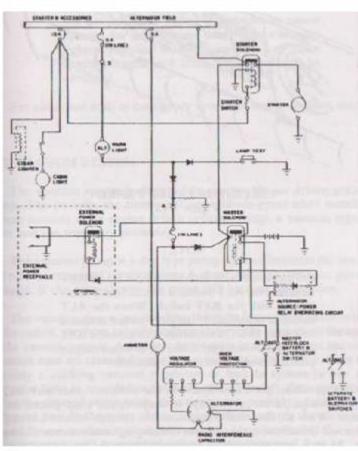
- Carb Icing
- Pitot-Static Problems
- Vacuum Failure
- Electrical Problems
- Engine Problems
- Carbon Monoxide
- Control System Failures
 - Flight Controls
 - Brakes
- Miscellaneous

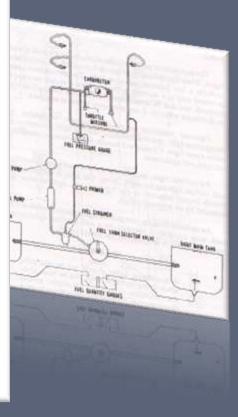
Piper PA-28 "Cherokee" Series Overview

- All metal, semi-monocoque structure
 - The skin provides part of the structural strength
 - 0.051" (1.3mm) 0.016" (0.4mm) thick
- Wings are of a full cantilever design with removable tips

- PA-28(R)(T)-####(T)
 - PA Piper Aircraft
 - 28(R)(T) Series ID
 - R = Retractable gear
 - ► T = T-tail
 - #### Horsepower
 - > ##0/5 = "Hershey bar" wing
 - ###1/6 = Semi-tapered wing
 - ####T = Turbo-charged engine


Flying 20 Club's Piper PA-28 Models


- Piper Dakota (PA-28-236)
 - ATC Type: P28B
 - Oil capacity
 - □ 12 QT oil capacity
 - □ 2 ³/₄ QT minimum
 - □ Recommend 9 QT minimum


- Piper Archer (PA-28-181)
 - ATC Type: P28A
 - Oil capacity
 - □ 8 QT oil capacity
 - □ 2 QT minimum
 - Recommend 6 QT minimum
 - Not uncommon for there to be a slight hesitation/stumble when advancing the throttle through ~1000-1500 RPM
- All 3 have a Tanis engine heater

Systems Review

Understanding the aircraft systems can save your life!

Cockpit Layout – N8107B

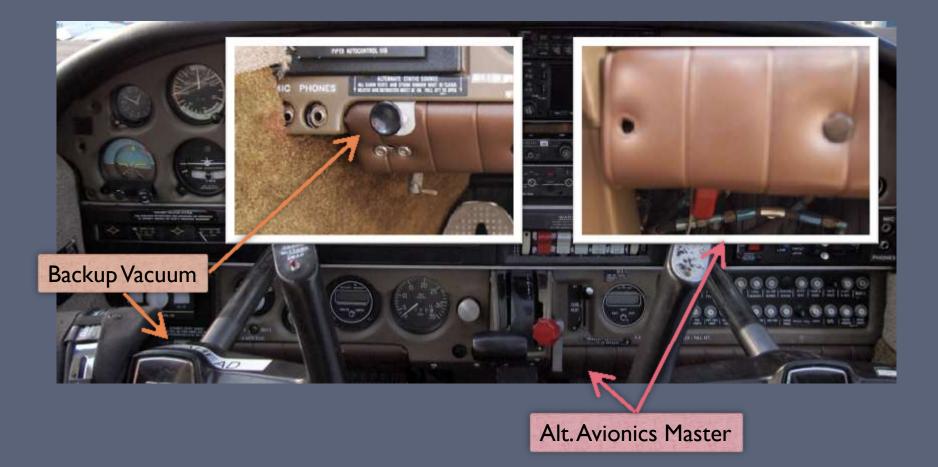
Know where all the switches and circuit breakers are by feel

Alternate Static Air

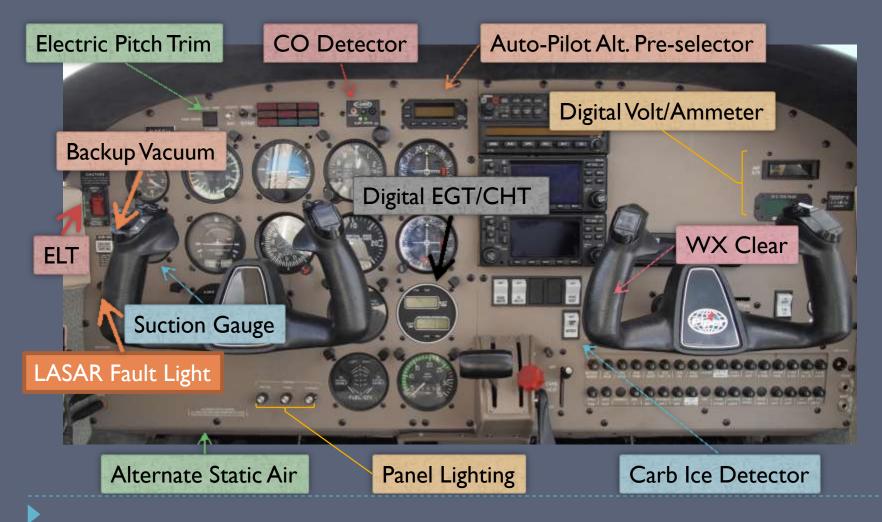
Digital EGT/CHT/OAT

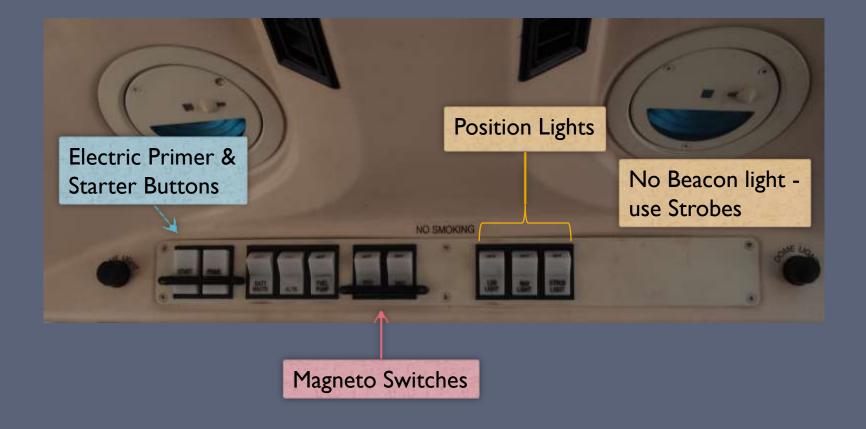
Cockpit Layout – N8107B (Cont.)

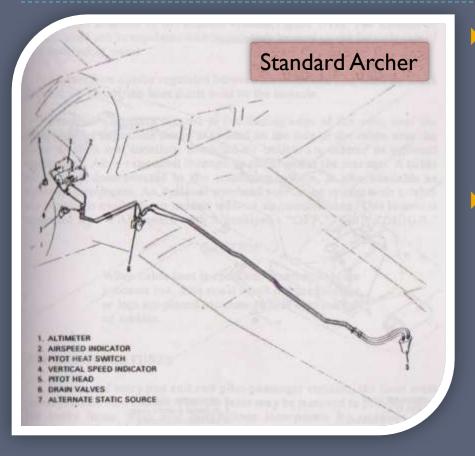
Know where all the switches and circuit breakers are by feel



Alt. Avionics Master


Cockpit Layout – N8237B

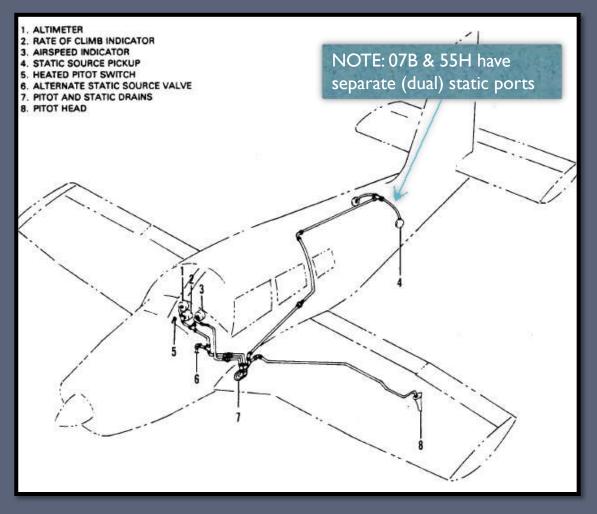

Cockpit Layout – N8237B (Cont.)

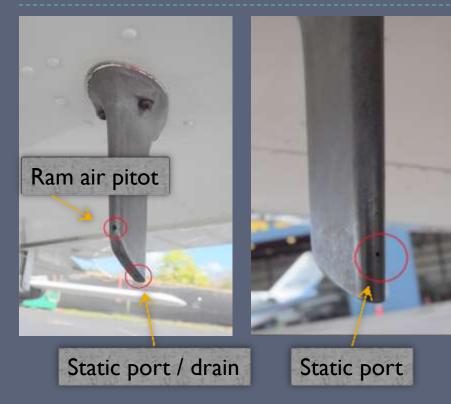

Cockpit Layout – N455H

Cockpit Layout – 455H Overhead Switches

Pitot-Static System

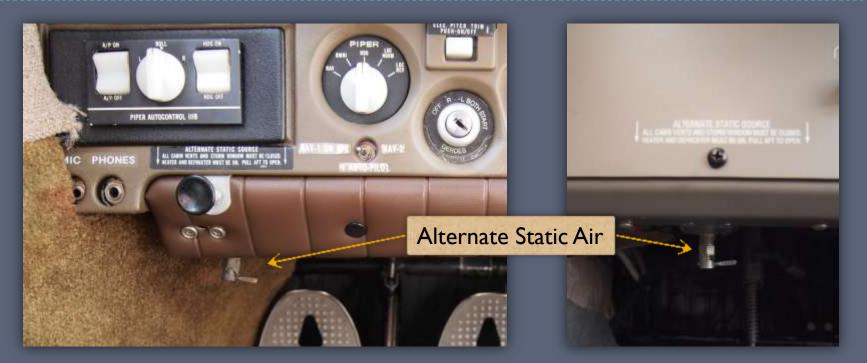
The pitot and static lines should be drained prior to each flight


- Not included on most checklists!
- The ASI, altimeter, and VSI static lines are plumbed in parallel

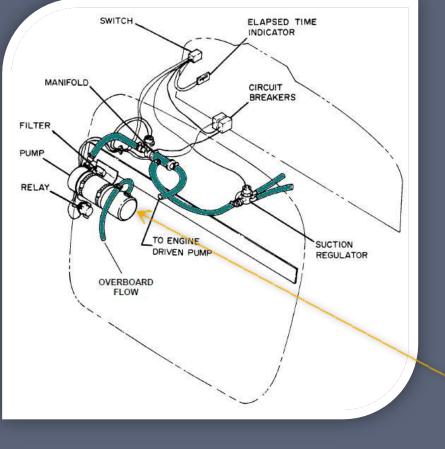

Pitot & Static Drains

Pitot-Static System – Dual Static Ports


- Benefits of the dual static-port configuration
 - Less likely that both will become obstructed
 - More accurate during a slip

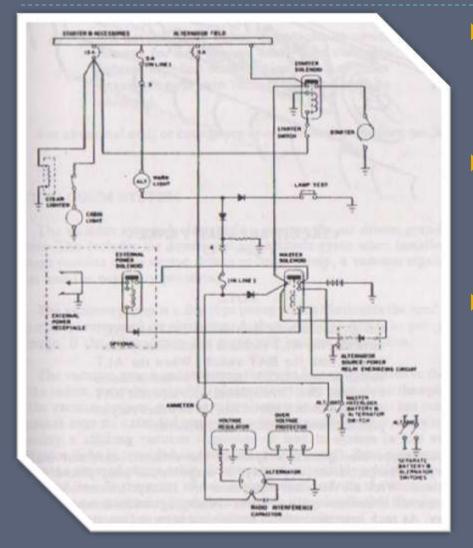

Pitot-Static System - Components

- Heated pitot-static vaneNo external pitot drain
 - Cabin pitot-static drain valves must be opened prior to each flight
- 455H & 8107B: Separate dual static ports

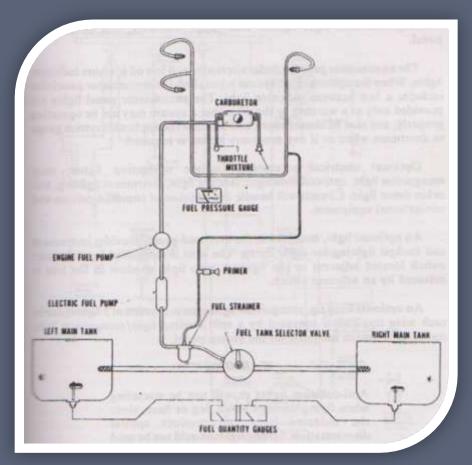

Pitot-Static System - Continued

Using alternate static air	
Storm window and vents	CLOSED
Cabin heater and defroster	FULL ON

Instrument	Indication
Airspeed Indicator	Reads higher
Altimeter	Reads higher (error <50')
Vertical Speed Indicator	Momentary climb


Vacuum System

- Normal vacuum range: 4.5" 5.5" at cruise RPM.
- The vacuum warning light will illuminate when the differential pressure is less than 3.5" hg.
 - At low RPMs (such as during taxiing or idling), the vacuum light may come on.
 - This is normal, and momentarily raising the RPMs should clear the light.

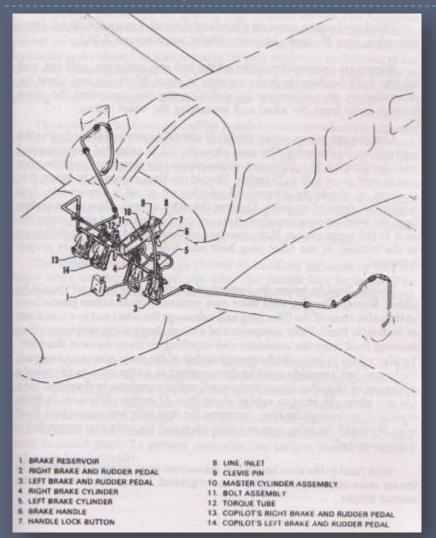


Electrical System

- The alternator warning light will illuminate when the alternator output drops to zero.
 - 8237B & 8107B
 - I4V system
 - I2V battery
 - 60A alternator
 - 455H
 - <u>28V system</u>
 - 24V battery
 - 70A alternator
 - The "low bus voltage" light will illuminate when the voltage drops to 24.5v or less.

Fuel System

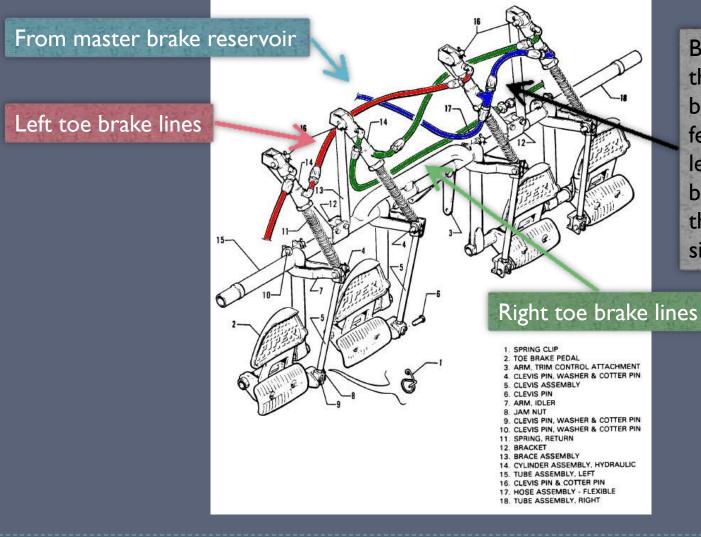
 One fuel sump and vent per tank, one main fuel strainer sump


455H & 8237B

- Two 25 gallon tanks, 24 gallons usable
 - 17 gallons usable at tabs
- 50 gallons total, 48 gallons usable
- ▶ 455H
 - Electric primer
- ▶ 8237B
 - Manual primer

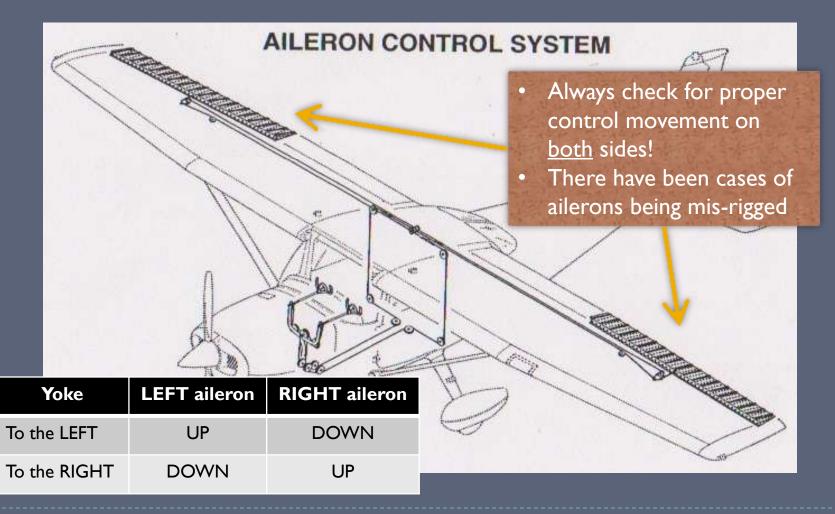
8107B

- Two 38.5 gallon tanks, 36 gallons usable
 - 25 gallons usable at tabs
- 77 gallons total, 72 gallons usable
- Manual primer
- The carburetor is attached below the oil cooler on Piper Lycomings, so you're essentially always running with partial carb heat.


Brake System

One master brake fluid reservoir

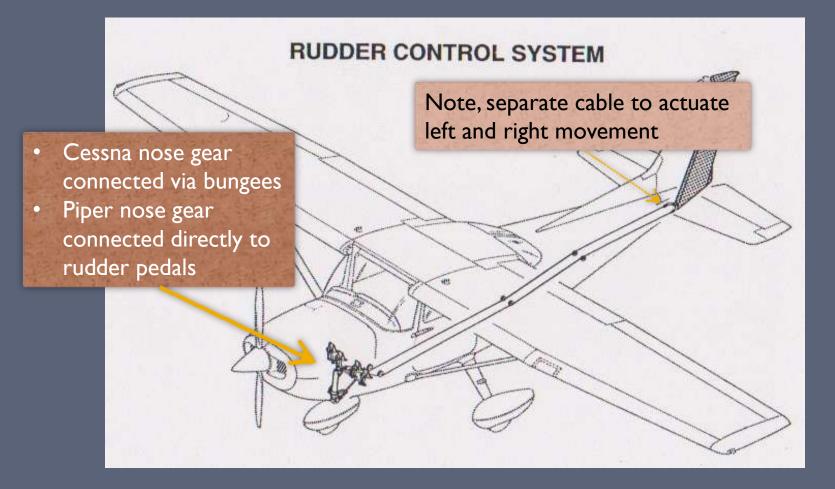
- Hand brake, and left & right toe brakes all have separate brake cylinders
 - The hand brake is incorporated into the master brake cylinder
- Pilot and Co-pilot brake pedals are plumbed in series


Brake System - Detail

Brake fluid from the master brake reservoir feeds into the left and right toe brakes through the co-pilot's side

Control System – Aileron

Diagram is of a Cessna 172, but the Piper PA-28 system is very similar

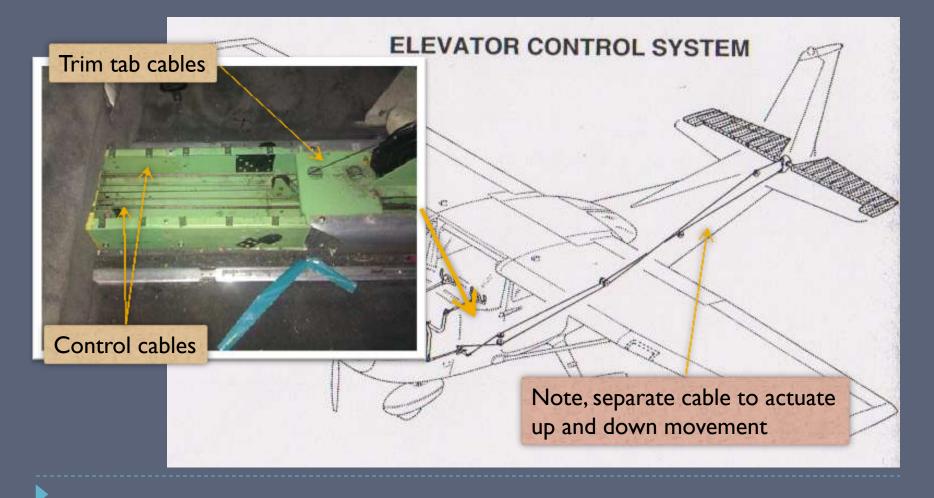


Control System – Aileron, Continued

- What to check for during pre-flight
 - Is the control wheel level when both ailerons are neutral?
 - If not, indicates a rigging issue
 - Do <u>both</u> ailerons move in the proper direction?
 - And do they move freely?
 - Do you get full aileron deflection in both directions?
 - If not, this also indicates a rigging issue
 - Are there any bulges in the ailerons?
 - Bulges could mean the aileron was used to push the plane forward, and will cause an out-of-trim condition during flight
 - Are there any cracks in the aileron skin?
 - Is there excessive free play in the ailerons (without a resulting deflection in the control wheel)?
 - Too much (>0.24 ") could indicate low cable tension, among other things

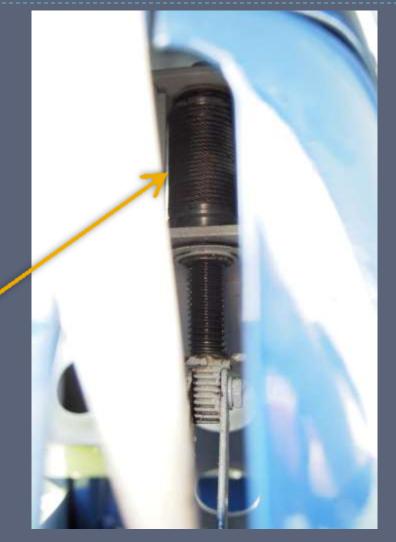
Control System – Rudder

Diagram is of a Cessna 172, but the Piper PA-28 system is very similar

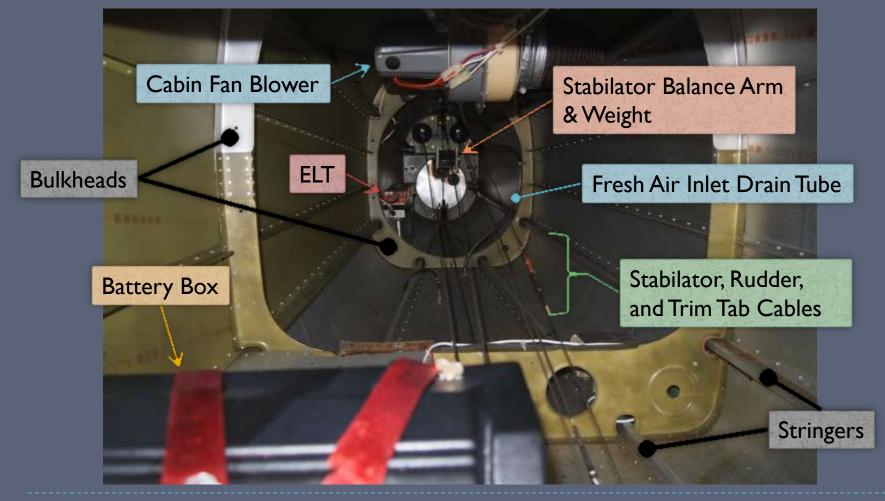

Control System – Rudder, Continued

What to check for during pre-flight

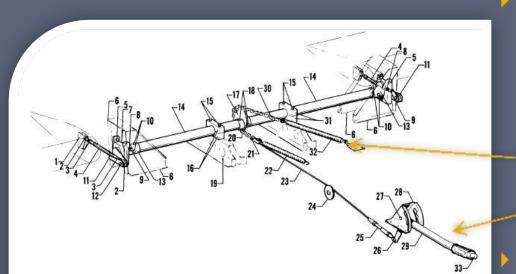
- > Are the rudder pedals neutral when the rudder is streamlined?
 - If not, indicates a rigging issue
 - This may be difficult to check for nose gear might not be in neutral position, based on how the aircraft is parked
- Rudder travel and operation can't be tested during the walkaround (unlike a Cessna)
 - Is there excessive free play in the rudder?
- Are there any bulges or cracks in the rudder or rudder skin?
 - Since the nose gear is directly connected to the rudder, excessive nose gear shimmy could cause damage


Control System – Stabilator

- Diagram is of a Cessna 172, but the Piper PA-28's rigging is very similar
 - NOTE: Stabilator and anti-servo tab are rigged separately


Control System – Stabilator, Continued

- What to check for during preflight
 - Does the stabilator and tab move in the proper direction?
 - Trim tab is an "anti-servo tab", and moves in the same direction of the stabilator's movement
 - Do you get full stabilator deflection in both directions?
 - Is there excessive free play in the trim tab?
 - Maximum of 0.15 "
 - Does the trim tab cabling look worn or frayed, or not evenly wrapped around the trim barrel?
 - Does movement of the trim wheel move the trim tab?
 - And does it move freely, or is there excessive resistance?



Control System – Empennage

Empennage access panel (rear of baggage compartment)

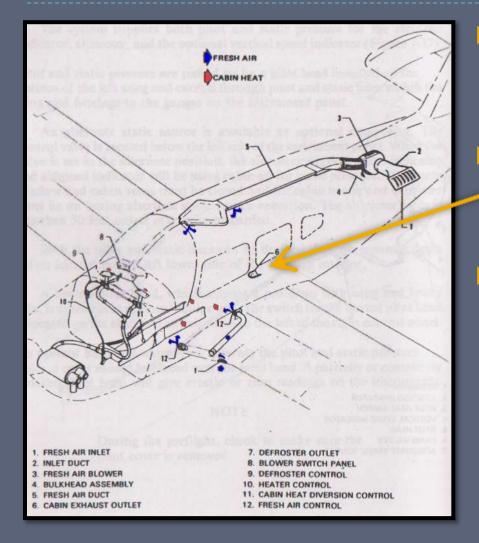
Control System – Flaps

1. BRACKET, ROD ATTACHMENT 2. BOLT, WASHER & NUT 3. JAM NUT 4. ROD, FLAP CONTROL 5. BOLT, BEARING BLOCK ATTACHMENT 6. BRACKET, BEARING BLOCK 7. BLOCK, BEARING 8. NUT, LOCK 9. SCREW, FLAP ADJUSTMENT 10. BOLT, WASHER & NUT 11. CRANK (ARM), TORQUE TUBE 12. BOLT, WASHER & BUSHING 13. FITTING, TORQUE TUBE STOP 14. TUBE, TORQUE 15. BOLT, WASHER & NUT 16. BLOCK, BEARING 17. SPROCKET, TENSION SPRING

- 19. BRACKET, BEARING BLOCK 20. CHAIN, TENSION SPRING 21. CLEVIS BOLT, BUSHING NUT & COTTER PIN 22. SPRING, TENSION 23. CABLE, FLAP CONTROL 24. PULLEY 25. TURNBUCKLE 26. CLEVIS BOLT, NUT & COTTER PIN 27. BOLT, BUSHING, WASHER & NUT 28. BRACKET, FLAP HANDLE 29. HANDLE, FLAP 30. CHAIN, RETURN SPRING
- 31. BLOCK, BEARING

18. BOLT, WASHER & NUT

- 32. SPRING, RETURN
- 33. BUTTON, FLAP RELEASE

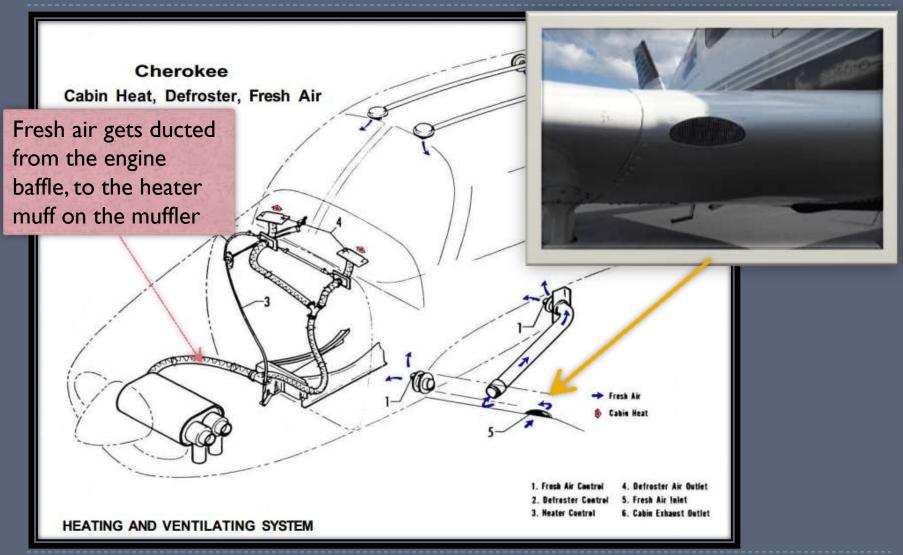

Two main things to note

- Left and right flap are directly linked together
 - Virtually no chance of a splitflap condition
- . Flap operation
 - Flaps are indirectly pulled UP by spring tension
 - Flaps are *directly* pulled DOWN by the flap handle

Due to aerodynamic forces, you might not be able to retract flaps during a spin, with icing, or in other situations outside of the normal operating envelope

- Always stay within the operating envelope!
- Flaps may also remain stuck down if the spring breaks

Heating & Ventilation

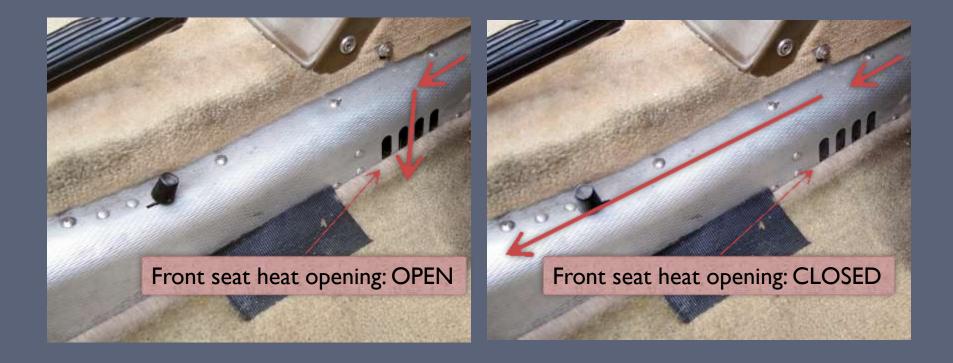

Airflow is regulated between front and rear seats by levers

Air is exhausted by an
 outlet under the rear
 seats

Heater and defroster

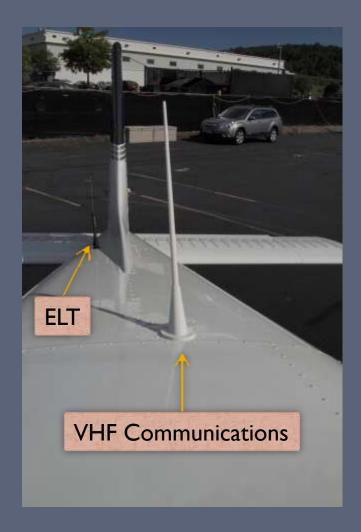
- Ram-air: ineffective until you are moving
- Heat comes from a muffler shroud
 - Cracks in muffler could lead to CO poisoning

Heating & Ventilation – Close Up

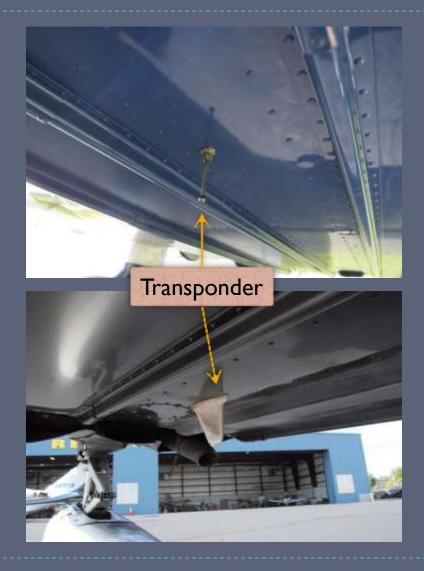


|Heating & Ventilation – Close Up (Cont.)

Heating & Ventilation – Heat Diversion

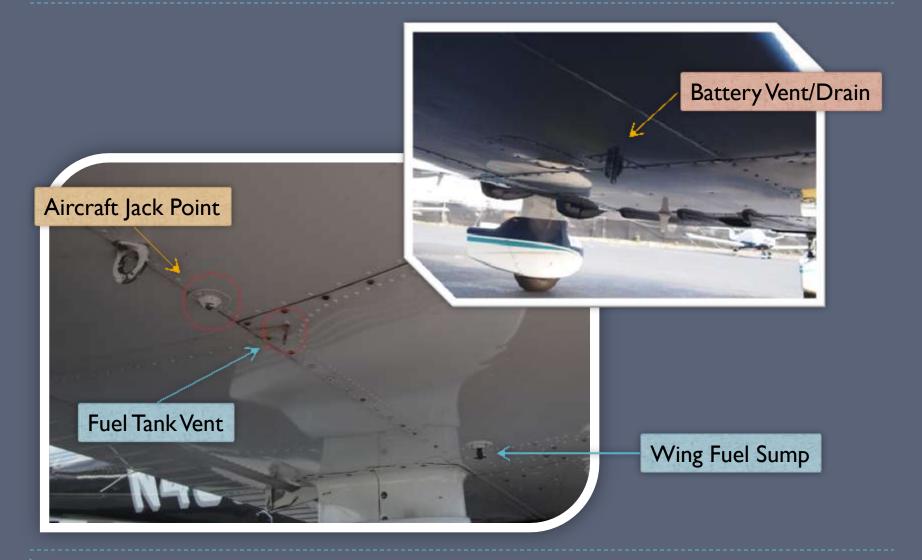

Push <u>forward</u> to divert heat to the <u>front</u> seat Push <u>reward</u> to divert heat to the <u>back</u> seat

Exterior



Exterior – Part 2

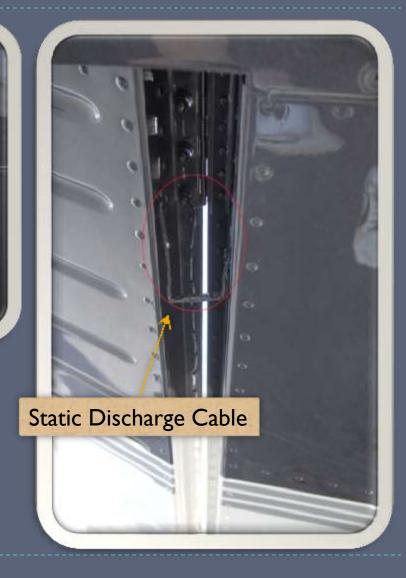
GPS Receivers


Exterior – Part 3

Strike-finder

Marker Beacon Receiver

VHF Communications


Exterior – Part 4

Exterior – Part 5

Static Discharge Wick

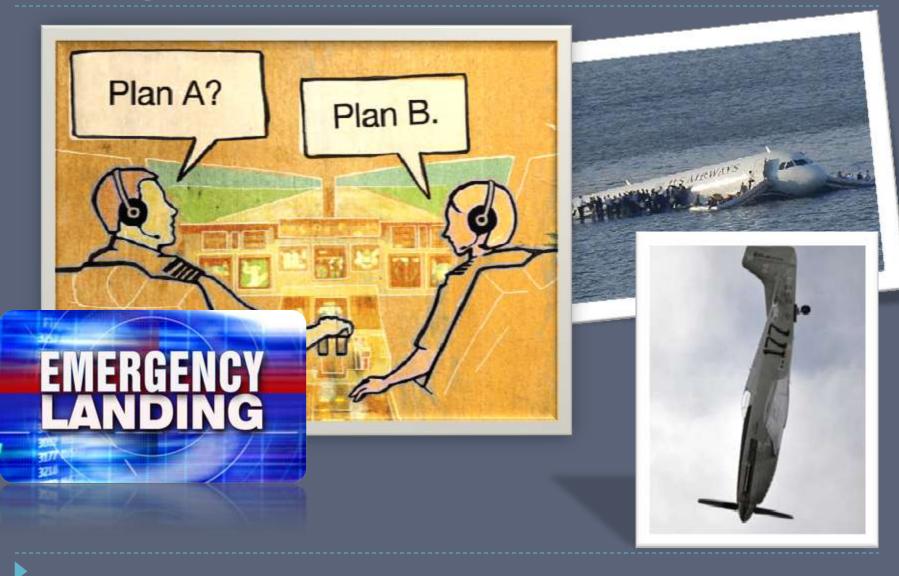
- As an aircraft moves through the air, it builds up a static charge. Eventually, the charge differential will become large enough that it will discharge into the air.
 - This discharge causes electromagnetic interference that will be picked up in the radios as loud static.
- The static discharge wicks help control the static buildup, and greatly reduces the electromagnetic interference from static discharges.

Tires & Landing Gear

Question – What is more stressful for the tires: takeoff or landing?

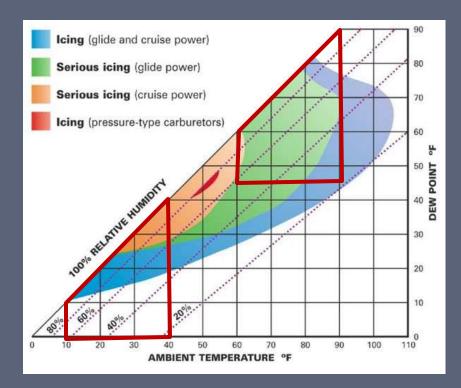
- Consider what the tires go through for takeoff versus landing
 - <u>Landing</u>: Sudden acceleration to touchdown speed, then continual deceleration and slow taxiing
 - <u>Takeoff</u>: Taxiing for takeoff (especially at a large airport) builds up heat in the tires, and then continual acceleration during takeoff
- Answer: both are stressful events
- Over-inflation
 - Can cause uneven tread wear
 - Reduced traction
 - Tread more susceptible to cutting
 - Increased stress on aircraft wheels
- Under-inflation
 - Uneven tire wear
 - Greatly increases stress and flex heating in the tire
 - Shortens tire life
 - Can lead to tire blowouts

- Proper inflation values
 - 455H & 8237B
 - Nose gear: 18psi
 - Main gear: 24psi
 - ▶ 8107B
 - Nose gear: 28-30psi
 - Main gear: 35-40psi
- Proper strut extension
 - Nose gear: 3.25" +/- 0.25"
 - Main gear: 4.5" +/- 0.50"


Weight & Balance

- Empty Weight
 - Aircraft Weight
 - Un-drainable oil & fuel

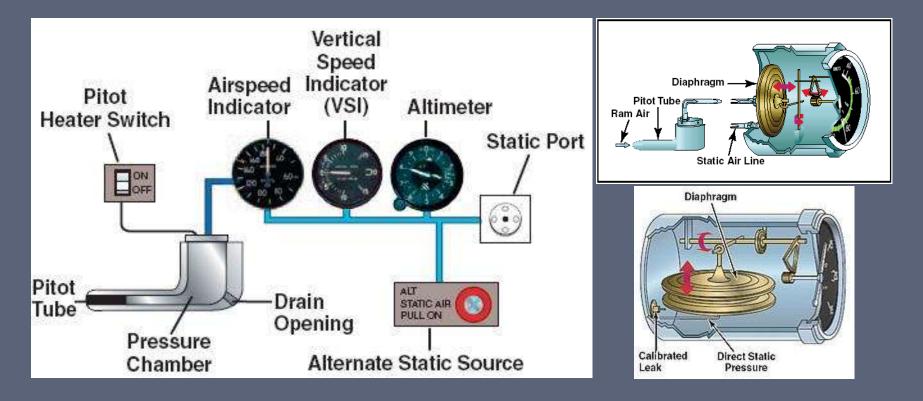
Density Altitude – Just because you're within the weight & balance, doesn't mean you're necessarily safe!


Emergencies

Carb Icing

Be aware of the potential for carb icing

- When is carb icing more of a threat: the winter or the summer?
 - Answer: More likely in the summer, but potentially more serious in the winter
 - But there's the potential for it nearly year-round
 - See more with AC 20-113, Lycoming SI 1148C



ALWAYS use full carb heat!

- Don't use partial heat: ice could reform in the intake system
- Partial heat is only acceptable with a carb temperature gauge
- During run-up, note a 100-300 RPM drop with carb heat applied
 - If engine roughness and/or RPM increase, indicates potential carb icing
- Detecting carb ice
 - Fixed-pitch (37B, 55H)
 - Unexplained decrease in RPM
 - Constant-speed (07B)
 - Unexplained decrease in MP
- If carb ice is suspected,
 - I. Apply carb heat
 - Wait for a decrease in engine roughness and/or increase in RPM
 - [Piper POH] If no change after about one minute, turn carb heat off
 - i.e. Additional troubleshooting required

Pitot-Static Problems

- Know specific power settings that give a known airspeed
- Pitot-heat is <u>anti</u>-ice; turn on *before* entering visible moisture when close to freezing temperatures

Pitot-Static Problems - Continued

	Pitot Port	Static Port	Flight Attitude	Result
Activate pitot heat			Climbing	ASI increasing
	BLOCKED	CLEAR	Level	ASI frozen
			Descending	ASI decreasing
	Pitot Port	Static Port	Flight Attitude	Result
			Climbing	
3	BLOCKED	BLOCKED	Level	ASI & Alt. Frozen, VSI 0
			Descending	
	Pitot Port	Static Port	Flight Attitude	Result
Use Alt. Static Air			Climbing	ASI decreasing
	CLEAR	BLOCKED	Level	ASI correct
			Descending	ASI increasing

Pitot-Static Problems – Discussion

- How would you know if you have a static port blockage?
 - Would ATC know? Why, or why not?
 - You make a pitch and/or power change and don't get the expected indication
 - Use and cross-check with GPS altitude
 - What about occasionally switching to alternate air?
 - If your altitude is way off, it may damage the altimeter
- How would you know if you have a pitot port blockage?
 - Would ATC know? Why, or why not?
 - □ Would they necessarily tell you?
 - You make a pitch and/or power change and don't get the expected indication
 - Use and cross-check with GPS airspeed
 - Remember, GPS is ground speed, not air speed

Pitot-Static Problems – Examples

Vertical Speed Indicator

- Pointer not at zero when level
 - Aging diaphragm / zero rate-of-climb out of adjustment
- Pointer doesn't respond
 - Obstruction in static line
 - Static vents frozen over
 - Water in static line
- Pointer oscillates
 - Leak in static lines
 - Possibly defective instrument
- Rate of climb changes reading when airplane is banked
 - Water in static lines
- Rate of climb reads very low during (obvious) climb or descent
 - Instrument case broken or leaking
- Altimeter
 - Excessive scale error or oscillations
 - Instrument defective

- Setting knob hard to turn
 - Instrument defective
- Altimeter stuck / doesn't change with altitude
 - Water or restriction in static line
- Altimeter changes reading when airplane is banked
 - Water in static line
- Airspeed Indicator
 - Airspeed oscillates
 - Instrument defective
 - Airspeed reads high
 - Instrument defective
 - Leak in static lines
 - Airspeed reads low
 - Instrument defective
 - Leak in static lines
 - Pitot head incorrectly aligned
 - Airspeed changes when airplane is banked
 - Water in static line

Vacuum Failure

- If instrument rated, be sure to include the vacuum gauge in your scan
 - Know where it is on the instrument panel
- Affected systems
 - Attitude Indicator
 - Directional Gyro

- Know what your backups are
 - Turn Coordinator electrically-powered gyro
 - All 3 Flying 20 Club planes have a backup electrical Attitude Indicator
- Backup vacuum pump
 - 8237B & 455H
 - Monitor electrical load when turned on

Electrical Problems

What systems are powered by the electrical system?

- Attitude instruments
 - Turn Coordinator
 - Electric Attitude Indicator
 - 455H's electric AI does not have a backup battery
 - Vacuum gauge
- Navigation equipment
 - VOR/LOC/GPS
 - Transponder
- Autopilot
 - Electric pitch trim
- Radios
- Engine instruments
 - Fuel level
 - Fuel pressure
 - Oil pressure & temperature
 - EGT/CHT/OAT
 - 455H still uses an analog OAT

- Volt/ammeter...obviously
- ▶ 8107B
 - Tachometer
 - Fuel flow

Lights

- Interior
- Exterior
- Other
 - CO detector
 - Cabin fan
 - Electric fuel pump
 - Clock
 - 455H
 - Carb ice detector
 - ► LASAR ignition
 - Electric vacuum pump
 - Hobbs meter
 - The one good thing!

Electrical Problems - Continued

- Know the layout of the circuit breaker panels
- Know which circuit breakers can be pulled

Electrical Problems - Troubleshooting

- Never reset a circuit breaker more than <u>once</u>!
- If the battery is dead, getting an external power start is not recommended
 - The battery's capacity is very low, and may not provide power very long if the alternator fails

Zero- reading on	Verify reading isn't simply low by turning on electrical equipment Check for a popped alternator field circuit			
ammeter .	breaker			
	Reset overvoltage relay (cycle ALT switch)			
	Reduce electrical load and land as soon as practical			
Electrical overload	"Stuck" starter	Starter is acting as a generator; electrical equipment may not function properly		
	Possibly a low battery	Indication should decrease within 5 minutes		
	Turn BAT switch off, and monitor ammeter	Indication should decrease within 5 minutes		
	Turn ALT switch off			
	Reduce electrical load and land as soon as practical			

Engine Problems

- Three types of problems
 - I. Complete power loss
 - 2. Partial power loss
 - 3. Pending potential problem
- Three phases of flight
 - 1. During takeoff
 - Before obtaining a safe altitude
 - 2. After obtaining a safe altitude
 - 2. Cruise
 - 3. Descent & Approach
- The type of problem you have, and the phase of flight that it occurs, will determine which steps you should take.

- Above all else, <u>maintain a safe</u> <u>airspeed!</u>
 - If doing so means having to do a controlled crash, so be it – better to crash land under control, than to stall/spin into the ground
 - Nearly all low-altitude stall/spin crashes are fatal!
 - But controlled crash landings have much more favorable outcomes
- When you have an engine problem, "think FAST"
 - <u>F</u>uel Fuel pump, switch tanks
 - <u>A</u>ir Carb Heat / Alternate Air
 - Spark Magnetos
 - <u>T</u>rim For best glide

Engine Problems – Continued

Complete Engine Power Loss

- During takeoff, before safe altitude
 - Maintain safe airspeed
 - Use flaps as necessary
 - Make only shallow turns
- During takeoff, after safe altitude / During descent and approach
 - Switch fuel tanks
 - Verify mixture rich, fuel pump on, and primer is locked
 - Carb heat on
 - Try left or right magneto separately
 - Adjust mixture and/or throttle
- During cruise
 - Check engine instruments for indication of cause of power loss
- Partial Engine Power Loss
 - Generally, the same steps as before, except less time critical
 - Aviate, Aviate, Aviate
 - □ THEN Navigate (and Communicate)

- Engine Roughness / Partial Power Loss
 - Carb heat on
 - [Piper POH] If still rough after one minute, carb heat off
 - Adjust mixture for maximum smoothness
 - Even at the same altitude, you may need to occasionally re-lean due to different air densities ("high to low, lookout below", etc)
 - Fuel pump on
 - I. In order to switch tanks
 - 2. In case of engine-driven fuel pump failure
 - Switch tanks
 - Fuel tank may be empty (or nearly empty)
 - Fuel may be contaminated
 - There may be a block in the fuel line to that tank
 - The fuel vent may be blocked
 - Try left or right magnetos separately
 - If operation satisfactory, continue at reduced power, mixture full rich, and land at first practical airport

Engine Problems – Indications

Loss of oil pressure

- Faulty gauge
 - Most likely if oil temperature doesn't also increase
- Malfunction in oil pressure regulating system
- Oil leak
- Land as soon as possible
 - If engine still running, maintain altitude in case of a sudden engine stoppage
- The low oil pressure light will illuminate when the oil pressure drops below 35psi.
- High oil pressure
 - Faulty gauge
 - Malfunction in oil pressure regulating system
 - Land as soon as possible
 - High oil pressure can damage the engine seals

- Low oil temperature
 - Engine not pre-heated enough
 - Winterizer plate not installed during cold weather
 - Faulty gauge
 - Most likely to happen on the ground shut engine down and investigate the cause

High oil temperature

- Low oil level
- Obstruction in oil cooler
- Winterizer plate still installed during warm weather
- Damaged/improper baffle seals
- Faulty gauge
- Climb at a higher airspeed or level off
- Increase mixture
- Reduce throttle
- If temperature continues to rise, land as soon as possible

Engine Problems – Indications (2)

Excessively high CHT

- Use of a lower fuel grade than 100 octane
- Extremely high manifold pressure with low RPM
- High power setting with an excessively lean mixture
- Extended ground operation or steep climbs in which cylinder cooling is reduced
- Climb at a higher airspeed or level off
- Increase mixture
- Reduce throttle
- If temperature continues to rise, land as soon as possible

- Low fuel pressure
 - Faulty gauge
 - Fuel system blockage
 - Engine-drive pump failure
 - Low fuel
 - Boost pump on
 - Switch tanks

Engine Problems – Miscellaneous

- Excessive engine vibration (other than engine roughness)
 - Could be a propeller out of balance
 - If imbalance is severe enough, it could cause the engine to be pulled off the engine mount
 - If this happens, recovery is likely impossible due to the severe weight & balance imbalance
 - Could also be a more serious engine problem

- Engine fire
 - During start
 - Mixture to idle cutoff
 - Open throttle & continue cranking engine
 - This is to attempt to draw the fire back into the engine
 - If fire continues for more than a few seconds, extinguish it by the best external means
 - In flight
 - Fuel selector off
 - Throttle closed
 - Mixture to idle cutoff
 - Electric fuel pump off
 - Heater & defroster off

Carbon Monoxide

Concentration	Symptoms	
35 ppm (0.0035%)	Headache & dizziness within 6-8 hours of constant exposure	
200 ppm (0.02%)	Slight headache, fatigue, and nausea within 2-3 hours	
400 ppm (0.04%)	Headache within 1-2 hours	
800 ppm (0.08%)	Dizziness, nausea, and convulsions within 45 minutes	
1600 ppm (0.16%)	Headache, dizziness, and nausea within 20 minutes; death in less than 2 hours	
3200 ррт (0.32%)	Headache, dizziness, and nausea within 5-10 minutes; death within 1 hour	
6400 ррт (0.64%)	Death within 25 minutes	
12800 ppm (1.28%)	Death in less than 3 minutes	

- Effects are cumulative over time; even small concentrations over time can be hazardous
- Altitude intensifies the effects
- Smoking also intensifies the effect
 - Smoking is roughly equivalent to a 5000' altitude

Carbon Monoxide – CO Alerts

- All three Flying 20 Club aircraft have the same CO detector installed, BUT they are located differently on the panel; know where to look!
 - Alert is triggered when the CO level > 50ppm
- What to do if you get an alert
 - First of all, <u>don't assume it's a false alarm!</u>
 - False alarms are possible, but the alert must be treated as valid
 - ONE reset of the system is permissible
 - Shut off the heater and defroster
 - Open fresh-air vents and storm window
 - Descending will reduce the effects of altitude and might buy you needed time
 - Land as soon as practicable
 - Declare an emergency if necessary

Control System Failures

- Broken throttle cable
 - Adjust power using the mixture control
- Broken stabilator cable
 - Trim for stable, level flight, until ready to land
 - Plan for a no-flap landing
 - □ Reduces the pitch variations required
 - Can't raise nose
 - Apply substantial nose-up trim
 - □ Push forward to pitch down, release pressure to pitch up
 - Can't lower nose
 - Apply substantial nose-down trim
 - □ Pull aft to pitch up, release pressure to pitch down
- Jammed rudder
 - Airplane will generally be flyable, but in a slip
 - Keep this in mind as you make any configuration changes
 - □ Airspeed may be erroneous
 - Unnecessary maneuvering could cause a stall/spin

Control System Failures – Brakes

Signs of impending brake failure

- Gradual decrease in braking action after brake application
- Noisy or dragging brakes
- Soft or spongy pedals
- Excessive travel and weak braking action
- Dealing with brake failure
 - Throttle to idle
 - Full aft elevator (to aide in aerodynamic braking)
 - If spongy brakes or pedal travel increases
 - Attempt to pump the brakes to build up brake pressure
 - If one brake is weak or fails
 - Use the other brake sparingly, using opposite rudder as required

Miscellaneous

- Seat slides back on takeoff or landing
 - DO NOT grab the yoke!
 - Be sure to inform your passengers (especially non-pilots) in the pre-flight briefing
- Sick passenger (airsick or otherwise)
 - What would you do?VFR, IFR
- Runaway pitch trim
 - What would you do?
 - Disconnect autopilot
 - □ Yoke disconnect
 - Autopilot master switch
 - □ Pull circuit-breaker
 - Disable electric pitch trim
 - □ Electric pitch trim master switch
 - Pull circuit-breaker
 - Turn off avionics master switch

- Turn off master switch
- Autopilot (including pitch trim) servos are designed to be overpowered
- There is also a speed sensor that disables the electric trim over 140 KIAS
- Propeller over-speed
 - 455H & 8237B
 - Reduce throttle
 - □ Stay below 2700 RPM
 - Reduce airspeed
 - ▶ 8107B
 - Reduce throttle
 - □ Stay below 2400 RPM
 - Check oil pressure
 - Reduce prop control
 - Reduce airspeed

Miscellaneous - Continued

- Spins (unintentional)
 - Exact steps vary from plane to plane read the POH
 - I. Throttle to idle
 - 2. Ailerons neutral
 - 3. FULL opposite rudder
 - L Followed by control wheel full forward
 - 4. Neutralize rudder after rotation stops and smoothly regain level flight
 - Airspeed will build rapidly, so return to level flight needs to be quick, but smooth so as not to overstress the airframe

Open door

- Such a common occurrence that is a non-issue, but frequently causes unnecessary accidents
- Remember, the doors are double-latched, so it's unlikely it is completely unlatched
- AVIATE, then determine best course of action
 - Nearly impossible to close the door yourself, but if it's only partially unlatched, it *may* be possible for a passenger to attempt to close the door
 - Otherwise, consider landing as soon as possible and closing on the ground

More Information

- AFM or POH
 - Archer II: 761-722
 - Archer III: 761-868
 - Dakota: 761-689
- Operator's Manual
 - Lycoming O-360: 60297-12
 - Lycoming O-540
- Airplane Maintenance Manual

- Type Certificate
 - Aircraft
 - Piper PA-28
 - Engine
 - Lycoming O-360
 - Lycoming O-540
 - Propeller
 - Sensenich 76E-series
 - Hartzell F2YR-series

Pilot's Handbook of Aeronautical Knowledge (FAA-H-8083-25A)

Open Sky Aviation, LLC. http://openskyaviation.biz gbaluha@openskyaviation.biz